Global Numerical Optimization by Using an Improved Immune Algorithm
نویسندگان
چکیده
An improved immune algorithm, named the Taguchi-immune algorithm (TIA), is proposed to solve global numerical optimization problems with continuous variables based on both the features of a biological immune system and the systematic reasoning ability of the Taguchi method. In the TIA, the clonal proliferation within hypermutation for several antibody diversifications and the recombination by using the Taguchi method for the local search are integrated to improve the capabilities of exploration and exploitation. The systematic reasoning ability of the Taguchi method is executed in the recombination operations to select the better genes to achieve the potential recombination, and consequently enhance the TIA. The proposed TIA is effectively applied to solve 15 benchmark problems of global optimization with 30 or 100 dimensions and very large numbers of local minima. The computational experiments show that the proposed TIA not only can find optimal or close-to-optimal solutions but also can obtain both better and more robust results than the existing improved genetic algorithms reported recently in the literature. Therefore, the TIA can be more robust, statistically sound, and quickly convergent for solving the global numerical optimization problems.
منابع مشابه
Improved Cuckoo Search Algorithm for Global Optimization
The cuckoo search algorithm is a recently developedmeta-heuristic optimization algorithm, which is suitable forsolving optimization problems. To enhance the accuracy andconvergence rate of this algorithm, an improved cuckoo searchalgorithm is proposed in this paper. Normally, the parametersof the cuckoo search are kept constant. This may lead todecreasing the efficiency of the algorithm. To cop...
متن کاملOPTIMIZATION OF RC FRAMES BY AN IMPROVED ARTIFICIAL BEE COLONY ALGORITHM
A new meta-heuristic algorithm is proposed for optimal design of reinforced concrete (RC) frame structures subject to combinations of gravity and lateral static loads based on ACI 318-08 design code. In the present work, artificial bee colony algorithm (ABCA) is focused and an improved ABCA (IABCA) is proposed to achieve the optimization task. The total cost of the RC frames is minimized during...
متن کاملCombined Heat and Power Economic Dispatch using Improved Shuffled Frog Leaping Algorithm
Recently, Combined Heat and Power (CHP) systems have been utilized increasingly in power systems. With the addition penetration of CHP-based co-generation of electricity and heat, the determination of economic dispatch of power and heat becomes a more complex and challenging issue. The optimal operation of CHP-based systems is inherently a nonlinear and non-convex optimization problem with a lo...
متن کاملAn Improved Imperialist Competitive Algorithm based on a new assimilation strategy
Meta-heuristic algorithms inspired by the natural processes are part of the optimization algorithms that they have been considered in recent years, such as genetic algorithm, particle swarm optimization, ant colony optimization, Firefly algorithm. Recently, a new kind of evolutionary algorithm has been proposed that it is inspired by the human sociopolitical evolution process. This new algorith...
متن کاملControl of nonlinear systems using a hybrid APSO-BFO algorithm: An optimum design of PID controller
This paper proposes a novel hybrid algorithm namely APSO-BFO which combines merits of Bacterial Foraging Optimization (BFO) algorithm and Adaptive Particle Swarm Optimization (APSO) algorithm to determine the optimal PID parameters for control of nonlinear systems. To balance between exploration and exploitation, the proposed hybrid algorithm accomplishes global search over the whole search spa...
متن کامل